《反比例函数》教学设计

时间:2024-04-27 18:14:02 作者:皮皮侠 字数:19407字

作为一无名无私奉献的教育工作者,就难以避免地要准备教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?它山之石可以攻玉,下面本站为您精心整理了4篇《《反比例函数》教学设计》,希望能够对困扰您的问题有一定的启迪作用。

《反比例函数》教学设计 篇一

一、知识与技能

1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解、

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念、

二、过程与方法

1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点、

2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识、

三、情感态度与价值观

1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣、

2、通过分组讨论,培养学生合作交流意识和探索精神、

教学重点:

理解和领会反比例函数的概念、

教学难点:

领悟反比例的概念、

教学过程:

一、创设情境,导入新课

活动1

问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化、

师生行为:

先让学生进行小组合作交流,再进行全班性的'问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式、教师组织学生讨论,提问学生,师生互动、在此活动中老师应重点关注学生:

①能否积极主动地合作交流、

②能否用语言说明两个变量间的关系、

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象、

分析及解答:(1);(2);(3)

其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

上面的函数关系式,都具有的形式,其中k是常数、

二、联系生活,丰富联想

活动2

下列问题中,变量间的对应关系可用这样的函数式表示?

(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;

(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化、

师生行为

学生先独立思考,在进行全班交流、

教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;

(2)能否积极主动地参与小组活动;

(3)能否比较深刻地领会函数、反比例函数的概念、

分析及解答:(1);(2);(3)

概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零、

活动3

做一做:

一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm、那么变量y是变量x的函数吗?是反比例函数吗?为什么?

师生行为:

学生先进行独立思考,再进行全班交流、教师提出问题,关注学生思考、此活动中教师应重点关注:

①生能否理解反比例函数的意义,理解反比例函数的概念;

②学生能否顺利抽象反比例函数的模型;

③学生能否积极主动地合作、交流;

活动4

问题1:下列哪个等式中的y是x的反比例函数?

问题2:已知y是x的反比例函数,当x=2时,y=6

(1)写出y与x的函数关系式:

(2)求当x=4时,y的值、

师生行为:

学生独立思考,然后小组合作交流、教师巡视,查看学生完成的情况,并给予及时引导、在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念;

②学生能否积极主动地参与小组活动、

分析及解答:

1、只有xy=123是反比例函数、

2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值、

解:(1)设,因为x=2时,y=6,所以有解得k=12

三、巩固提高

活动5

1、已知y是x的反比例函数,并且当x=3时,y=?8、

(1)写出y与x之间的函数关系式、

(2)求y=2时x的值、

2、y是x的反比例函数,下表给出了x与y的一些值:

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表、

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”、

四、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解、在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象、反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象、

反比例函数教案 篇二

一、知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。

二、过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的`能力。

三、情感态度与价值观

1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点

掌握从物理问题中建构反比例函数模型。

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备

多媒体课件。

教学过程

一、创设问题情境,引入新课

活动1

问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。下面的例子就是其中之一。

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R shubaoc.com 的值。

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力。

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用。

教师应给“学困生”一点物理学知识的引导。

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值。

生:(1)解:设I=kR ∵R=5,I=2,于是2=k5 ,所以k=10,I=10R 。

(3) 当I=0.5时,R=10I=100.5 =20(欧姆)。

师:很好!“给我一个支点,我可以把地球撬动。”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

生:这是古希腊科学家阿基米德的名言。

师:是的。公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;阻力阻力臂=动力动力臂。

下面我们就来看一例子。

二、讲授新课

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系。因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用。

师生行为:

先由学生根据“杠杆定律”解决上述问题。

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系。

反比例函数教案设计 篇三

教学目标:

1、知识与能力目标:

(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。

(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。

2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。

3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。

教学重点和难点

重点:进一步掌握反比例函数的概念、图像、性质并正确运用。

难点:反比例函数性质的灵活运用。数形结合思想的应用。

教学方法:

探究——讨论——交流——总结

教学媒体:

多媒体课件。

教学过程:

一、知识梳理:

同学们,今天我们就来复习反比例函数,通过今天的复习课,希望大家加深对反比例函数知识的理解和运用首先请同学们回忆一下,对反比例函数你了解那知识?

课件展示:

1、反比例函数的意义

2、反比例函数的图象与性质

3、利用反比例函数解决实际问题

二、合作交流、解读探究

(一)与反比例函数的意义有关的问题

课件展示:

忆一忆:什么是反比例函数?

要求学生说出反比例函数的意义及其等价形式

巩固练习:课件展示:

1、下列函数中,哪些是反比例函数?

(1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

2、写出下列问题中的函数关系式,并指出它们是什 么函数?

⑴当路程s一定时,时间t与平均速度v之间的关系。

⑵质量为m(kg)的气体,其体积v(m3)与密度ρ(kg/m3)之间的关系。

3、若y= 为反比例函数,则m=______

4、若y=(m-1) 为反比例函数,则m=______ 。

(二)运用反比例函数的图象与性质解决问题

1、反比例函数的图象是

2、图象性质见下表(课件展示):

3、做一做(课件展示)

(1)函数y= 的图象在第______象限,当x<0时,y随x的增大而______ 。

(2)双曲线y= 经过点 (-3 ,______ )。

(3)函数y= 的图象在二、四象限内,m的取值范围是______ 。

(4)若双曲线经过点(-3 ,2),则其解析式是______.

(5)已知点A(-2,y1),B(-1,y2) C(4,y3)都在反比例函数y= 的图象上,则y1、y2 与y3的大小关系(从大到小)为____________ 。

(三)综合运用(课件展示)

一次函数的图像y=ax+b与反比例函数y= 交与M(2,m)、N(-1,-4)两点。(1)求反比例函数和一次函数的解析式;(2)根据图像写出反比例函数的值大于一次函数的值的X 的取值范围

三、随堂练习

见课件

四、小结

1、反比例函数的意义

2、反比例函数的图象与性质

五、作业:

配套练习22页21、22题

《反比例函数》教学设计 篇四

一、知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观

1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备

1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:

(1)复习已学过的反比例函数的图象和性质

(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程

一、创设问题情境,引入新课

复习:反比例函数图象有哪些性质?

反比例函数 y?k

x 是由两支曲线组成,

当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;

当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课

[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?

(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?

(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题。

师生行为:

先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动。

在此活动中,教师有重点关注:

①能否从实际问题中抽象出函数模型;

②能否利用函数模型解释实际问题中的现象;

③能否积极主动的阐述自己的见解。

生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=

所以储存室的底面积S是其深度d的反比例函数。

104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S的值和它相d

对应,反过来,知道S的一个值,也可求出d的值。

题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd

即施工队施工时应该向下挖进20米。

生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石。为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?

104 根据S=,把d=15代入此式子,得 d

S=104 ≈666.67. 15104. d

当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要。 师:大家完成的很好。当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,

三、巩固练习

1、(基础题)已知某矩形的面积为20cm2:

(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;

(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,

求其长为多少?

(3)如果要求矩形的长不小于8cm,其宽至多要多少?

2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗。

(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?

(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?

设计意图:

让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望。

师生行为:

由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题。

生:解:

(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米。

13000 所以,S·d=1000, S= 。 3d

(2)根据题意把S=100cm2代入S=30003000中,得 100= 。d=30(cm)。 dd

所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.

3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.

(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?

(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?

四、小结

1、通过本节课的学习,你有哪些收获?

列实际问题的反比例函数解析式

(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;

(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。

2、利用反比例函数解决实际问题的关键:建立反比例函数模型。

五、布置作业

P54—55.第2题、第5题

六、课时小结

本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。

它山之石可以攻玉,以上就是本站为大家带来的4篇《《反比例函数》教学设计》,能够给予您一定的参考与启发,是本站的价值所在。