作为一位杰出的教职工,可能需要进行说课稿编写工作,借助说课稿可以有效提高教学效率。我们应该怎么写说课稿呢?书包范文为小伙伴们精心整理了最新高中数学说课稿(3篇),希望能够对小伙伴们的写作有一些帮助。
高中数学说课稿 篇一
我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。
一、教学理念
新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。
因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。
二、教材分析
三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及a、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。
本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律是本节课的重点。
难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。
依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。
三、教学目标
[知识与技能]
通过“五点作图法”正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=asin(ωx+φ)的简图,能举一反三地画出函数y=asin(ωx+φ)+k和y=acos(ωx+φ)的简图。
[过程与方法]
通过引导学生对函数y=sinx到y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。
[情感态度与价值观]
课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。
四、教学过程(六问三练)
1、设置情境
《函数y=asin(ωx+φ)的图象(第二课时)》说课稿。
高中数学说课稿 篇二
各位领导、专家、同仁:您们好!
我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:
一、教材分析
教材的地位和作用
“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!
根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。
二、教学目标
根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:
知识目标:
1、了解曲线上的点与方程的解之间的一一对应关系;
2、初步领会“曲线的方程”与“方程的曲线”的概念;
3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;
4、强化“形”与“数”一致并相互转化的思想方法。
能力目标:
1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;
2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;
3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
情感目标:
1、通过概念的引入,让学生感受从特殊到一般的认知规律;
2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。
三、重难点突破
“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。
怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。
四、学情分析
此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。
五、教法分析
新课程强调教师要调整自己的角色,改变传统的教育方式,教师要由传统意义上的知识的传授者和学生的管理者,转变为学生发展的促进者和帮助者,简单的教书匠转变为实践的研究者,或研究的实践者,在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,本节课遵循了概念学习的四个基本步骤,重点采用了问题探究和启发式相结合的教学方法。
从实例、到类比、到推广的问题探究,它对激发学生学习兴趣,培养学习能力都十分有利。启发引导学生得出概念,深化概念,并应用它去讨论、研究和解决问题。在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题的能力打下了基础。
利用多媒体辅助教学,节省了时间,增大了信息量,增强了直观形象性。
六、学法分析
基础教育课程改革要求加强学习方式的改变,提倡学习方式的多样化,各学科课程通过引导学生主动参与,亲身实践,独立思考,合作探究,发展学生搜集处理信息的能力,获取新知识的能力,分析和解决问题的能力,以及交流合作的能力,基于此,本节课从实例引入→类比→推广→得概念→概念挖掘深化→具体应用→作业中的研究性问题的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者。
七、教学过程分析
1、感性认识阶段——以旧带新、提出课题
高中数学说课稿 篇三
1.知识目标:研究曲线的切线,从几何学的角度了解导数概念的背景,明确瞬时变化率就是导数,掌握求曲线切线斜率的一般方法。
2.能力目标:通过嫦娥一号绕月探测卫星变轨瞬间的瞬时速度和运动的方向为背景,从极限入手,培养学生的创新意识和数形转化能力。
3.情感目标:通过运动的观点,体会曲线切线的内涵,挖掘数形关系,激发学生学习数学的热情。
二、教学重点
曲线切线的概念形成,导数公式的理解和运用。
三、教学难点
理解曲线切线的形成是通过逼近的方法得出的。引导学生在平均变化率的基础上探求瞬时变化率。
四、教学过程
1.新课引入,创设情景
①(大屏幕显示)嫦娥一号绕月探测卫星运行轨迹以及四次变轨的全过程。
②讨论问题:()卫星在每次变轨的瞬间不仅有瞬时速度,而且要研究它运动的方向。引出本节课主要研究的课题――曲线的切线。
2.概念形成,提出问题
①(大屏幕显示)分析卫星在变轨瞬间与变轨前的位置关系,引出曲线的割线。
②由运动的观点、极限的思想,归纳出曲线切线的概念。以及求曲线切线斜率的一种方法。
3.转换角度,分析问题
①引入增量的概念,在曲线c上取p(x0、y0)及邻近的一点q(x0+△x,y0+△y),过p、q两点作割线,分别过p、q作y轴,x轴的垂线相交于点m,设割线pq的倾斜角β, .
②割线斜率用增量表示的形式不变。(大屏幕显示) 改变p的邻近点q的位置、曲线的类型、倾斜角的性质,发现tanβ 表示的形式始终不变。左、右邻近点的讨论,为下面说明极限的存在做准备。
4.归纳总结,解决问题
①(大屏幕显示)由于△x可正可负,
但△x≠0,研究△x无限趋近于0,
用极限的观点导出曲线切线的斜率。
②讨论问题:引导学生将这一运动过程 转化为已学的代数问题。
k==
点评公式,重点强调平均变化率和瞬时变化率之间的关系,提出导数。同时引导学生归纳出求曲线切线斜率的一般方法和步骤
5.例题剖析,深化问题
例:曲线的方程f(x)=x2+1 求此曲线在点p(1,2)处的切线的方程
6.学生演板,落实问题
①已知曲线y=2x2上一点a(1,2),求
(1)点a处的切线的斜率;
(2)点a处的切线的方程。
②求曲线y=x2+1在点p(-2,5)处的切线方程。
7.课堂小结
8.作业
p125 第6、7、8、9题