下面是范文网小编收集的数学说课稿3篇 中小学数学说课稿,以供借鉴。
数学说课稿1
范文网后面为你推荐更多数学说课稿!
一、找准学生学习新知的“最近发展区”,在大背景下认识分数
1、分数对于学生来说是全新的,如何将这一全新的知识内化为学生自身的知识,找准学生学习的“最近发展区”是重要的,它是促使学生从“实际发展水平”向“潜在发展水平”的桥梁,学生的思维从已知世界自然而然滑向未知领域。教学时,从学生熟悉的“一半”入手,明确一半是怎么分的,从而引入用一个新的数来表示所有事物的“一半”。
2、以往我们在初次教学分数时,总是以单个的物体的进行平均分,然后“半个”无法用整数表示的时候就引入了分数,优点是这样分数出现的实际需要性能够凸现,学生对分数的产生印象深刻;缺点是这样以单个的物体入手,学生对分数的认识受到局限,会导致到高段学习分数的意义的时候,对单位“1”难以理解和接受。其实“一半”和“半个”是有区别的,只有“半个”才用分数表示是不全面的。因此,我在分数引入的时候,请学生说身边一些事物的一半,发现日光灯是11个,一半一下子无法说出来。同时一个圆的一半是多少也无法说清。然后,引出“所有事物的一半我们只用一个数表示出来”。从而引入分数二分之一,这样对于分数的认识放在了一个宽广的背景下来学习,学生体会到任何事物的一半都可以用一个1/2来表示。
二、加强直观教学,降低认知难度
分数的知识是学生第一次接触,是在整数认识的基础上进行的,是数的概念的一次扩展。对学生来说,理解分数的意义有一定的困难。而加强直观教学可以更好地帮助学生掌握概念,理解概念。在本节课的教学中,教师充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,充分利用多媒体课件的演示来加强直观教学,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。特别是在比较分子是1的分数大小时,尽管学生在正方形纸上这出了几个几分之一的分数,并且用分数表示出来,但是学生在比较分数大小的时候,还是受到整数认识的影响,认为1/32比1/8大,于是课件显示猪八戒分西瓜的过程,学生直观的认识到分的份数越多,一份就越小。从而使学生内化了分子是一的分数大小的比较这一知识。
三、根据学生年龄特征,创设有趣的问题情境
对于小学生来说,数学学习往往是他们自己生活经验中对数学现象的一种“解读”.在教学中,如果能密切联系学生的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,那么学起来必然亲切、有趣、易懂了。学生的好胜心理强,教师在学生认识了1/4。纸上折了1/4后,谁还能折出其它分子是1的分数,学生动手积极性很高,纷纷折出了其它分数。当问谁折的分数大的时候学生就更愿意比了。起初,学生对分数的比较这一知识停留在比较表面、比较肤浅的水平上。他们用整数的大小比较方法来比较分数,教师也不做出判断,而是利用学生喜欢听的故事,将知识蕴于故事中,在听故事、看课件演示中,使学生主动得构建自己的知识,而不是被动地去接受知识。当回过头来再比谁折的分数大的时候,学生都笑了。而教师也不必再多说什么,学生已经自己推翻了先前的认识。
在整个课堂预设时,想的比较完美,事实上在真正上这堂课的时候有很多的缺憾、很多教学环节还有待完善。从整体上认识分数,对三年级学生而言是否要求拔得过高,在折分数操作时是否需要及时的比较等等。我想只有一次次积累、一次次思考,才能上出真正平实而有效的数学课。
数学说课稿2
一、教材中的地位及作用
《变化的鱼》是北师大版八年级上册第五章的第三节。主要内容是坐标变化和图形变换之间的关系。本册第三章学习了图形变换的平移和旋转,本章第一、二两节学习了平面直角坐标系和如何在坐标系内确定一个点,本节内容就是把这二者有机结合起来,为学生提供了一个探索坐标变化和图形变换之间的关系的一个平台,在经历图形的坐标变化和图形变换的探索过程中,培养形象思维能力,体会数形结合思想。该课时内容在整个中学数学学习中是一个转折点,具有承前启后的作用。通过本节课的学习,为相似、位似、函数及其图象的学习奠定基础,而且这一节内容,将向学生明确提出数形结合这一思想,要求学生逐步掌握利用平面直角坐标系建立模型解决生活中遇到的实际问题。
二、学情分析
我所任教八年级学生大部分处于城乡结合部,形象思维能力和动手能力较强,逻辑思维能力偏弱,课堂主动性不够。对于本节,在之前学生已经学习了简单的图形变换以及直角坐标系的相关知识,为本节的学习奠定了基础,但本节内容也不是两种知识的简单叠加,由于二者的综合,加大了知识的深度,给学生的理解上带来很大的难度。因此,在教学中,应遵循学生的自身特点和本节的内容实际来进行设计。
三、教学目标
知识与技能目标:在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、拉伸、压缩之间的关系;进一步体会点与坐标一一对应的思想。
过程与方法目标:让学生经历图形坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力,培养学生数形结合意识。
情感、态度与价值目标:通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、归纳能力。
四、重点难点
重点:探索并掌握图形坐标变化与图形变换之间的内在关系。
难点:坐标变化和图形拉伸、压缩间的关系。
五、教法与学法分析
1、“教”的本质在于引导,引导的艺术在于含而不露,指而不明,开而不达,引而不发。为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,所以本节课采用的教法为:
(1)情景式教学法:课堂开始通过多媒体动画,激发学生的学习动机。
(2)探究式教学法:将启发、诱导贯穿教学始终,唤起学生的求知欲望,促使他们动手、动脑、动嘴,积极参与教学全过程,在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。
2、教学中,学生是学习的主体,教师为学生学习的引导者、合作者、促进者,所以学法确定为:
(1)探究学习法。把问题留给学生,引导他们去解决问题。
(2)合作学习法。和小组的同学一起探讨、交流,利用集体的智慧去解决问题。
六、教学过程
教学过程是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节的教学内容及重难点教学过程如下:“情景引入——新课导入——探索新知识——举一反三——触类旁通——巩固拓展”。
教学环节师生活动过程设计意图
情景引入利用多媒体向学生展示一段动画,在动画和音乐声中,让学生进入课堂状态,同时,让学生对本堂课产生好奇和疑问。利用优美的音乐和动画,激发学生的探识欲望
新课导入课件中直接演示作图过程:在坐标系中标出以下点:(0,0)(5,4)(3,0)(5,1)(5,—1)(3,0)(4,2),(0,0),并顺次连接。
问题:所作图形象什么?
通过多媒体,在坐标系中拖动一条可以随意移动的直线鱼,让学生观察,在这条鱼移动的过程中,什么发生了变化?什么没变?
让学生讨论总结出自己的结论,教师不作任何说明。
要求学生在讨论的基础上去作图:让鱼向右移动3个单位。
作出图形,比较所作图形是否和所得结论吻合。
多媒体演示作图过程和前后两条鱼的变化过程。开门见山的直接作图,既复习了前面所学知识,又让学生对本节将要学习的内容有了初步的认识。
问题引入。
探索新知想一想议一议
一、在前面问题的基础上,由学生直接说出:当向左游动2个单位时,图形的坐标发生了什么变化?向上或向下游动2个单位时,图形的坐标又发生了什么变化?
通过课件演示其变化过程,验证学生的答案。
二、针对一般情况,当坐标发生什么样的变化时,图形横向平移或纵向平移?
由前面的作图和演示,学生已经知道:要让鱼移动,必须改变图形的坐标。再次在坐标系中拖动那条可以随意移动的鱼,让学生在已有一定认知之后再来仔细观察,思考,总结更全面的规律。
综合学生的结论,引导他们得出如下结论:
当纵坐标不变,横坐标增加时,图形向右平移;纵当坐标不变,横坐标减少时,图形向左平移。横坐标增加或减少a(a>0)时,图形向右或向左平移a个单位。
当横坐标不变,纵坐标增加时,图形向上平移;当横坐标不变,纵坐标减少时,图形向下平移。纵坐标增加或减少a(a>0)时,图形向上或向下平移a个单位。把整个探索过程交给学生去做,教师只作为一个协助者,让学生通过思考、讨论、动手操作等过程得出结论,既能加深对本节内容的印象,又培养了他们学习和解决数学的能力。
数学说课稿3
一、教材分析
1.地位和作用
“分式的意义”是九年制义务教育课本中七年级第二学期第十五章的第一节内容,是中学知识体系的重要组成部分。分式的概念与整式是紧密相联的,是前面知识的延伸,同时也是对前面知识的进一步运用和巩固。学生掌握了分式的意义后,为进一步学习分式、函数、方程等知识作好铺垫;有助于培养学生的分析、归纳、概括的能力。
2.学情分析
我任教班级学生基础不是很扎实,学习能力不够高.通过分数的学习,学生可能会用分数的定义去理解分式.但是在分式中,它的分母不是具体的数,而是含有字母的整式。为了让学生能切实掌握所学知识,提高学生的能力,在教学中对于教材中的例题和练习题,作了适当的延伸拓展和变式处理。
3.教学目标(1)知识目标:理解分式的概念,并能判断一个有理式是不是分式。
(2)技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
(3)能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。
(4)情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。
4.教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
(1)重点:分式的意义:分式与除法的关系;
(2)难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。
二、教学方法与学法本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。
三、教学过程
本节课的教学我主要分下面这样几个环节
1.设问激疑,以旧探新,类比联想,形成概念
教师先问学生两个问题,帮助学生回忆分数。
思考:请各位同学将下列各题用一个恰当的分数来表示:
1. 一段绳子长3米,把它平均分成4份,则每份长是多少?
2. 甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少?
然后教师再请学生看以下两个问题。
思考:1.一段绳子长3米,把它平均分成份,则每份长是多少?
2.甲地到乙地的路程是180千米,一辆汽车行驶.小时,从甲地到乙地,这辆汽车平均每小时的速度是多少?
学生通过运算、比较;可以发现.是一种新的代数式。教师介绍这种新的代数式,我们称它为“分式”,从而引出课题“分式的意义”。
接着,教师在此基础上引导学生类比联想,给出分式的概念。即两个数相除可以用“”或“”来表示,如果两个代数式A,B相除我们也可以用“A÷B” 或“”来表示。
分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字母,那么叫做分式。如:分母中都含有字母,都是分式。
(这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)